
CS304 Project: Progress Report (Total: 60 points + 28 points for code reviews)

Deadline: May 8 (Friday), 11.59pm

You have specified your schedule in the project proposal. The goal of this progress report is for you

to discuss your progress since the project proposal. (Invitation link:

https://classroom.github.com/g/4qN8liNK. When you are ready to submit your project, you

need to create a tag called “version-1.0” in this repository. Read

https://stackoverflow.com/questions/18216991/create-a-tag-in-a-github-repository if you don’t know

how to create a tag in GitHub.)

What to submit?

 All source code and code comments

 All tests

 README.md. All answers for the question (except for Javadoc comments and JUnit
test). Include the group name and name and id of each team member.

 .gitignore

1. Choose issues to implement for this iteration based on two criteria: (1) at least 1-2 GitHub

issues per person, and (2) the number of selected issues should be more than 50% of all

scheduled issues. Note that we want you to do planning for the issues again for this iteration to

get your most up-to-date schedule.

a) List all the issues that your group have chosen. Explain the reason for choosing this issue?
Hint: Your answer can be based on either (1) importance of the issue; or (3) dependencies
between issues; or (2) the ease of constructing test cases but you need to explain in more
details (for example, I choose issue A because A is the issue with the highest priority
among the selected issues). (Total: 6 points, 2 points for each issue & reason)

b) Write 2 test scenario for each issue. The test scenario could either be JUnit test cases

(better to have JUnit test cases) or test scripts that help you to reproduce the bug

These test cases serves as the specification for each issue (Example positive test scenario:

“When user login successfully to her account, a “Welcome” dialog box is shown”. Example

negative test scenario: “When user login with an incorrect userid/password, the user will get

https://classroom.github.com/g/4qN8liNK
https://stackoverflow.com/questions/18216991/create-a-tag-in-a-github-repository


an error message saying “Incorrect message”). You should commit the test scenario in

the README.md. (Total: 12 point, 2 points for each test scenario)

c) Implement all the user stories of the issues that you have chosen. (Maximum Total: 12
points, 4 points for each issue implemented)

d) Run Checkstyle, FindBugs, and PMD for all the submitted code. Make sure that you follow

the coding standard specified in your selected project (you can use the Google coding

standard if your project don’t have any coding standard. Read the “Project Resources and

Coding Standard folder” in Blackboard for getting a copy of the Google coding standard) .

For Checkstyle, change your code so that there is no serious errors (severity=”error”). For

FindBugs, change your code so that there is no error with priority=”Medium” and

priority=”High”. For PMD, change your code so that there is no error left. Note that the TA

will randomly choose a team member to run these tools so if the team member doesn’t how

to run these plugins, 5 points will be deducted for the whole team so please help your team

member in the installation and the usage of the tool. (Total: 6 points, 1 point will be

deducted for each violation in Checkstyle, FindBugs and PMD.).

e) [The person who was in charge of Documentation should check this requirement] Write

meaningful Javadoc comments for each public method. Read the link at

https://google.github.io/styleguide/javaguide.html#s7-javadoc for information about the

coding standard for Javadoc. (Total: 5 points, 1 point will be deducted for each public

method that are not documented.).

f) [The person who was in charge of testing should check this requirement] Write >=2 JUnit

tests for each modified/newly added public method for your implementation for GitHub

issues. (Total: 14 points, 1 point will be deducted for each public method that are not

tested.).

g) Include a schedule for each week after May 1 to plan for your remaining issues. It is

recommended to plan for two subparts (two user stories) of the GitHub issues

implemented per week and one small subpart (one user story) for Week 15 (Need to

https://google.github.io/styleguide/javaguide.html


prepare final release of the project). (5

points)

Example Table:

Week 13 “Login …”, “Machine-learning…”

Week 14

Week 15

h) Which lab session will you attend for the Code Review? Choose the lab session that

most of your group members have registered for (If you choose the wrong session, 5

points will be deducted). The leader of the team should put the choice in GitHub

discussion according to the sample format in

https://github.com/orgs/cs304-fall2020/teams/all-students/discussions/3. Those who

comment earlier will get the slot that they want. For example, For TA A who is in charge of 4

groups, student could choose TA A, Slot 1, Slot 2, …Slot 4.

A) Lab Session 1 实验 1班(Instructor: Prof. Shin Hwei Tan)

TA A (4 groups), TA B (4 groups), TA C (3 groups)

B) Lab Session 2 实验 2班(Instructor: Hu Chun Feng)

TA D (4 groups), TA E (4 groups)

C) Lab Session 3 实验 3班(Instructor: Hu Chun Feng)

TA F (4 groups), TA G (4 groups)

D) Lab Session 4 实验 4班(Instructor: Hu Chun Feng)

TA H (4 groups), TA I (4 groups)

Online Code Review with TA/Student Helper (Total: 28 points)

https://github.com/orgs/cs304-fall2020/teams/all-students/discussions/3


We will schedule a code review during the lab session on May 9 -May 15. Please attend your

lab session according to the schedule. The code review will be conducted in the following

way:

1. The leader will first introduce their selected projects. Then, he will summarize the

progress of the team in a few sentences and introduce the role of each team member.

2. The designer will explain the design of their implementation and describe the design

plan for the next iteration. The designer will also show a demo of the implemented

issues.

3. The TA will pick one person randomly to run the static analysis tool.

4. The person (developer) in charge of each issue will describe how it works.

5. The person in charge of documentation will explain the part that he has implemented

and the Javadoc comment for each method.

6. The testers will run all tests and shows the tests results and code coverage results.

7. The team leader will end the code review by showing and explaining their plan for

next iteration. The TA will give some suggestions for future improvement.

Points for the Code Review

oDemonstration of the implemented issues. (5 points)

oDemonstration of running static analysis tools. (The TA will randomly choose a

team member to run these tools so if the team member doesn’t how to run these

plugins, points will be deducted for the whole team so please help your team member

in the installation and the usage of the tool). (5 points)

oQuality of the code written. Points will be deducted if the TA read your code and see

that have non-descriptive names in your variables, method or classes (for example,



method called “methodA”) or putting everything into one class, or long methods.

(5 points, 1 points deducted for each mistake)

oQuality of the Javadoc comments written. If the Javadoc comments do not explain

the parameter well (for example, “@param a” only have the name of the parameter

without any description) (5 points)

oQuality of the Junit test written. Show the tests written to the TA and running

code coverage tool. (5 points)

oOthers (Design). 1 point will be deducted for not including “.gitignore” for your project.

2 point will be deducted for not well-structured/ messy code. (3 points)


